2,126 research outputs found

    A Large-Diameter Hollow-Shaft Cryogenic Motor Based on a Superconducting Magnetic Bearing for Millimeter-Wave Polarimetry

    Full text link
    In this paper we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background (CMB) polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism (HRM). The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15 deg. Lower temperature operation will require additional development activities, which we will discuss

    Pathophysiology of Concussive Non-Penetrative Captive Bolt Stunning of Turkeys

    Get PDF
    The non-penetrative captive bolt (NPCB) has been proposed as a more humane and practical alternative to constant voltage electrical stunning for small-scale seasonal turkey producers. This study evaluated the effectiveness of the CASH® Small Animal Tool (SAT) (formerly known as the CASH® Poultry Killer, CPK) and three configurations of the Turkey Euthanasia Device (TED), assessing behavioural, cranial/spinal responses and brain pathology. Immediately after stunning all birds showed cessation of rhythmic breathing and loss of neck and beak tension. One bird shot with the TED/hen configuration showed a positive nictitating membrane reflex in one eye with no other positive reflexes. All birds had moderate/severe gross damage to the hyperpallium layer over the cerebrums. For almost all other cerebrum structures, thalamus, and hindbrain, the TED/poult configuration and SAT produced the most extensive damage. The frequency of petechial haemorrhage in the pons and medulla was less in SAT shot birds (76% and 71% respectively) compared to those shot with the different configurations of the TED (ranging from 81% to 100%), however this difference was not significant. In conclusion, both NPCB guns were effective in inducing unconsciousness in turkeys, regardless of the variations in shot position and the different configurations of the TED

    The MAP Satellite Feed Horns

    Get PDF
    We present the design, manufacturing methods, and characterization of 20 microwave feed horns currently in use on the Microwave Anisotropy Probe (MAP) satellite. The nature of the cosmic microwave background (CMB) anisotropy requires a detailed understanding of the properties of every optical component of a microwave telescope. In particular, the properties of the feeds must be known so that the forward gain and sidelobe response of the telescope can be modeled and so that potential systematic effects may be computed. MAP requires low emissivity, azimuthally symmetric, low-sidelobe feeds in five microwave bands (K, Ka, Q, V, and W) that fit within a constrained geometry. The beam pattern of each feed is modeled and compared with measurements; the agreement is generally excellent to the -60 dB level (80 degrees from the beam peak). This agreement verifies the beam-predicting software and the manufacturing process. The feeds also affect the properties and modeling of the microwave receivers. To this end, we show that the reflection from the feeds is less than -25 dB over most of each band and that their emissivity is acceptable. The feeds meet their multiple requirements.Comment: 9 pages with 7 figures, of which 2 are in low-resolution versions; paper is available with higher quality figures at http://map.gsfc.nasa.gov/m_mm/tp_links.htm

    Cosmic microwave background anomalies viewed via Gumbel Statistics

    Full text link
    We describe and discuss the application of Gumbel statistics, which model extreme events, to WMAP 5-year measurements of the cosmic microwave background. We find that temperature extrema of the CMB are well modelled by the Gumbel formalism and describe tests for Gaussianity that the approach can provide. Comparison to simulations reveals Gumbel statistics to have only weak discriminatory power for the conventional statistic: fNL<1000f_{NL}<1000, though it may probe other regimes of non-Gaussianity. Tests based on hemispheric cuts reveal interesting alignment with other reported CMB anomalies. The approach has the advantage of model independence and may find further utility with smaller scale data.Comment: 5 pages, 8 figures, accepted for publication in MNRAS. This version: added reference
    corecore